Mathematics

This is the Topic page for mathematics. Below, you can see all subtopics, as well as Symbols and Equations listed under this topic.

Back

Topics

Subtopics

Geometry
Complex Numbers
Functions
Calculus
Set theory
Statistics

Associated Equations

Cosine is an even function | \(\cos(\theta) = \cos(-\theta)\)
Cosine Periodicity | \(\cos(\theta) = \cos(\theta + 2\pi k), k \in \mathbb{Z}\)
Sine-Cosine equivalence | \(\cos(\theta) = \sin(\theta + \pi/2)\)
Sine is an odd function | \(\sin(-\theta) = -\sin(\theta)\)
Even functions | \(f(x) = f(-x)\)
Imaginary Number Relation to Real Numbers | \(j = \sqrt{-1}\)
Imaginary Number Definition | \(j = \pm \sqrt{-1}\)
Odd functions | \(-f(x) = f(-x)\)
Complex Conjugate Definition | \((a + bj)^{*} = a - bj\)
Cartesian Form of a Complex Number | \(Z = a + b j\)
Definition of a Derivative | \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\)
Product Rule | \((u \cdot v)' = u' \cdot v + v' \cdot u\)
Polar Form of a Complex Number | \(Z = r \cdot \cos(\theta) + r \cdot j \cdot \sin(\theta)\)
Derivative of exp(x) | \((e^{x})' = e^{x}\)
Derivative of Sine | \((\sin(x))' = \cos(x)\)
Derivative of Cosine | \((\cos(x))' = -\sin(x)\)
Eulers Formula | \(e^{j \cdot \theta} = \cos(\theta) + j \sin(\theta)\)
Angle addition for cosine | \(\cos(\theta + \phi) = \cos(\theta) \cdot \cos(\phi) - \sin(\theta) \cdot \sin(\phi)\)
Euler Definition of Sine | \(\sin(\theta) = \frac{e^{j \cdot \theta} - e^{-j \cdot \theta}}{2 \cdot j}\)
Euler Definition of Cosine | \(\cos(\theta) = \frac{e^{j \cdot \theta} + e^{-j \cdot \theta}}{2}\)
Angle addition for sine | \(\sin(\theta + \phi) = \sin(\theta) \cdot \cos(\phi) + \sin(\phi) \cdot \cos(\theta)\)
Pythagorean identity | \(\cos^{2}(\theta) + \sin^{2}(\theta) = 1\)
Pythagorean theorem | \(a^{2} + b^{2} = c^{2}\)
Definition of Exponentiation | \(x^{y} = \prod_{i = 1}^{y} x\)
Exponent Addition | \(x^{y + z} = x^{y} \cdot x^{z}\)
Angle subtraction for sine | \(\sin(\theta - \phi) = \sin(\theta) \cdot \cos(\phi) - \sin(\phi) \cdot \cos(\theta)\)
Angle subtraction for cosine | \(\cos(\theta - \phi) = \cos(\theta) \cdot \cos(\phi) + \sin(\theta) \cdot \sin(\phi)\)
Product to sum cosine cosine | \(\cos(\theta) \cdot \cos(\phi) = \frac{1}{2}(\cos(\theta + \phi) + \cos(\theta - \phi))\)
Product to sum sine sine | \(\sin(\theta) \cdot \sin(\phi) = \frac{1}{2}(\cos(\theta - \phi) - \cos(\theta + \phi))\)
Product to sum sine cosine | \(\sin(\theta) \cdot \cos(\phi) = \frac{1}{2}(\sin(\theta - \phi) + \sin(\theta + \phi))\)
Definition of a Quadratic Polynomial | \(f(x) = a \cdot x^{2} + b \cdot x + c\)
Quadratic Formula | \(x_{1, 2} = \frac{-b \pm \sqrt{b^{2} - 4 a c}}{2 a}\)
Discrete signal | \(x[n] = x(nT_{s}) = a \cos(\omega n T_{s} + \phi) = a \cos(\hat \omega n + \phi)\)
Radian Frequency | \(\omega = 2 \pi f\)
Normalized Radian Frequency | \(\hat \omega = \omega T_{s}\)
Definition of a Finite Impulse Response | \(h[n] = \sum_{k = 0}^{M} b_{k} \delta[n - k]\)
Convolution of a Signal and a Filter | \(h[n] \ast x[n]= \sum_{k = 0}^{M} h[k] x[n - k]\)
General Form for the Equation of a Straight Line | \(y = m x + C\)
Gradient of a Straight Line | \(m = \frac{\Delta y}{\Delta x}\)
Definition of a Definite Integral | \(\int_{a}^{b} f(x) \:d x = \lim_{n \to \infty} \sum_{i = 1}^{n} f(x_{i}) \Delta x_{i}\)
Area of a Rectangle | \(A = W \cdot H\)
Power Rule for Differentiation | \(\frac{\:d}{\:d x}(a x^{k}) = k a x^{k - 1}\)
Power Rule for Integration | \(\int (a x^{k}) \:d x = \frac{a}{k + 1}x^ {k + 1} + C\)
Integral of a Derivative | \(\int f'(x) \:d x = f(x) + C\)
Derivative of an Integral | \(\frac{\:d}{\:d x} (\int f(x) \:d x) = f(x)\)
Integral of exp(x) | \(\int e^{x} \:d x = e^{x} + C\)
Integral of exp(ax) wrt x | \(\int e^{a x} \:d x = \frac{e^{a x}}{a} + C, a \neq 0\)
Integration by Parts | \(\int u \:d v = u v - \int v \:d u\)
Definition of Product Symbol | \(\prod_{a = i}^{b} x_{i} = a_{i} a_{i + 1} ... a_{b}, a < b\)
Integral of (a exp(ax)) wrt x | \(\int x e^{a x} \:d x = \frac{a x - 1}{a^{2}} e^{a x} + C\)
Kullback-Leibler Divergence | \(KL(P, \hat{P}) = \sum_{\mathbf{s} \in S} P(\mathbf{s}) \frac{\log(P(\mathbf{s}))}{\log(\hat{P}(\mathbf{s}))}\)
Division of Exponents | \(\frac{a^{x}}{a^{y}} = a^{x - y}\)

Associated Symbols

Cosine | \(\cos\)
Pi | \(\pi\)
Sine | \(\sin\)
Angle | \(\theta\)
Circumference | \(c\)
Diameter | \(d\)
Value of f at x | \(f(x)\)
Imaginary Number | \(j\)
Real Part | \(\Re\)
Imaginary Part | \(\Im\)
Complex Conjugate | \(^{*}\)
Complex Number | \(Z\)
Legrange's Derivative Notation | \('\)
Legrange's Derivative Function | \(f'(x)\)
Integral | \(\int\)
Eulers Constant | \(e\)
Generic Function 1 (Calculus) | \(u\)
Generic Function 2 (Calculus) | \(v\)
Angle 2 | \(\phi\)
Set of integers | \(\mathbb{Z}\)
Generic Variable | \(x\)
Generic Variable 2 | \(y\)
Generic Variable 3 | \(z\)
Product | \(\prod\)
Iterator | \(i\)
Set of whole numbers | \(\mathbb{W}\)
Generic Constant 1 | \(a\)
Generic Constant 2 | \(b\)
Generic Constant 3 | \(c\)
Discrete function | \(x\)
Signal Function | \(x\)
A Whole Number | \(n\)
An Integer | \(k\)
Radian Frequency | \(\omega\)
Sum | \(\sum\)
Kronecker Delta Function | \(\delta\)
Order of a Difference Equation | \(M\)
Radius | \(r\)
Convolution | \(\ast\)
Generic Function | \(f\)
Sinusoidal Response of a Finite Impulse Response Filter | \(H\)
Step Size | \(h\)
Limit | \(\lim\)
Gradient of a Line | \(m\)
Y-intercept | \(C\)
Differential | \(\:d\)
Number of Subintervals | \(n\)
Infinity | \(\infty\)
Change in Variable | \(\Delta\)
Width of a Rectangle | \(W\)
Height of a Rectangle | \(H\)
Area | \(A\)
Constant of Integration | \(C\)
Generic Function 2 | \(g\)
Period | \(T\)
Fundamental Period | \(T_{0}\)
A Second Integer | \(n\)
Set of Reals | \(\mathbb{R}\)
Polynomial | \(p\)
Polynomial Constant | \(\omega\)
Secondary Iterator | \(j\)
Generic Ordinary Differential Equation | \(z\)
Generic Function 3 | \(z\)
Identity Matrix | \(I\)
Logarithm | \(\log\)
Probability Distribution | \(P\)