There are no prerequisites for this page
The sine-cosine equivalence highlights a fundamental relationship between the sine and cosine trigonometric functions. This relationship underscores the phase shift property, where the cosine function of any angle (\( \htmlId{tooltip-angle}{\theta} \)) is equivalent to the sine function of that angle shifted by \(\frac{\htmlId{tooltip-pi}{\pi}}{2}\htmlId{tooltip-u-radians}{rad}\) (or \(90 \htmlId{tooltip-u-degrees}{\degree}\)). You can see this in the red arrow in the diagram below.
Essentially, this means that the cosine graph is the same as the sine graph, but it is shifted to the left by \(\frac{\htmlId{tooltip-pi}{\pi}}{2}\) radians on the unit circle, indicating a quarter of a circle ahead in terms of angle. This equivalence is pivotal in trigonometry, facilitating transformations and simplifications of trigonometric expressions and equations. Understanding this relationship enhances the comprehension of wave functions in physics and engineering, where sine and cosine functions model periodic phenomena, showing that these functions are essentially the same shape but differ in phase.
\(\theta\) | This is a commonly used symbol to represent an angle in mathematics and physics. |
\(\cos\) | This is the symbol for cosine, a trigonometric function that calculates the ratio of the adjacent side to the hypotenuse of a right-angled triangle. |
\(\pi\) | This is the symbol for pi, mathematical constant representing the ratio of a circle's circumference(\( \htmlId{tooltip-circumference}{c} \)) to its diameter(\( \htmlId{tooltip-diameter}{d} \)). |
\(\sin\) | This is the symbol for sine, is a trigonometric function that represents the ratio of the opposite side to the hypotenuse in a right-angled triangle. |
Given the function \(f(x) = \htmlId{tooltip-cosine}{\cos}(x)\), use the sine-cosine equivalence to express \(f(x)\) as a sine function. Then, find the value of \(f(x)\) when \(x = \frac{\htmlId{tooltip-pi}{\pi}}{6}\)
Solution:
Using the sine-cosine equivalence \( \htmlId{tooltip-cosine}{\cos} \)(\( \htmlId{tooltip-angle}{\theta} \)) = \( \htmlId{tooltip-sine}{\sin} \)(\( \htmlId{tooltip-angle}{\theta} \) + \( \htmlId{tooltip-pi}{\pi} \)/2), we can express the given function \(f(x) = \htmlId{tooltip-cosine}{\cos}(x)\) in terms of sine as:
\(f(x) = \htmlId{tooltip-sine}{\sin}(x + \frac{\htmlId{tooltip-pi}{\pi}}{2}\))
To find the value of \(f(x)\) when \(x = \frac{\htmlId{tooltip-pi}{\pi}}{6}\), we substitute \(x = \frac{\htmlId{tooltip-pi}{\pi}}{6}\) into the sine expression:
\(f(\frac{\htmlId{tooltip-pi}{\pi}}{6}) = \htmlId{tooltip-sine}{\sin}(\frac{\htmlId{tooltip-pi}{\pi}}{6} + \frac{\htmlId{tooltip-pi}{\pi}}{2}) = \htmlId{tooltip-sine}{\sin}(\frac{\htmlId{tooltip-pi}{\pi}}{6} + \frac{3\htmlId{tooltip-pi}{\pi}}{6}) = \htmlId{tooltip-sine}{\sin}(\htmlId{tooltip-sine}{\sin}(\frac{4\htmlId{tooltip-pi}{\pi}}{6}) = \htmlId{tooltip-sine}{\sin}(\frac{2\htmlId{tooltip-pi}{\pi}}{3}) \)
The value of \(\htmlId{tooltip-sine}{\sin}(\frac{\htmlId{tooltip-pi}{\pi}}{2})\) can be found using the unit circle or trigonometric tables:
\(\htmlId{tooltip-sine}{\sin}(\frac{2\htmlId{tooltip-pi}{\pi}}{3}) = \frac{\sqrt(3)}{2})\)
Therefore, \(f(\frac{\htmlId{tooltip-pi}{\pi}}{6}) = \frac{\sqrt(3)}{2}\) .
Was this page helpful?