This equation shows the result of the integral:
\(x\) | This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc. |
\(e\) | This symbol represents Euler's constant. It is approximately \(2.718\). |
\(\int\) | This is the symbol for an integral, sometimes referred to as an antiderivative. Graphically, it can be understood as the area between a curve and the axis the integral is taken with respect to. |
\(C\) | This symbol represents the constant of integration. It must be added to the result of all definite integrals to encompass all possible solutions that satisfy the integral. |
\(\:d\) | This is the symbol for a differential. It represents an infinitesimally small (infinitely close to zero) change in whatever variable it is with respect to. |
\(a\) | This is a symbol for any generic constant. It can hold any numerical value |
Consider our integral:
\[\htmlId{tooltip-integral}{\int} \htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x}\]
We will use integration by parts:
\[\htmlId{tooltip-integral}{\int} \htmlId{tooltip-funU}{u} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-funV}{v} = \htmlId{tooltip-funU}{u} \htmlId{tooltip-funV}{v} - \htmlId{tooltip-integral}{\int} \htmlId{tooltip-funV}{v} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-funU}{u}\]
Let us take \(\htmlId{tooltip-funU}{u} = \htmlId{tooltip-var}{x}\) and \(\htmlId{tooltip-diff}{\:d} \htmlId{tooltip-funV}{v} = \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x}\)
From here it follows that:
\(\htmlId{tooltip-diff}{\:d} \htmlId{tooltip-funU}{u} = \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x}\)
We can also integrate both sides of the equation:
\[1 \cdot \htmlId{tooltip-diff}{\:d}\htmlId{tooltip-funV}{v} = \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x}\]
(\(\htmlId{tooltip-diff}{\:d} \htmlId{tooltip-funV}{v}\) is multiplied by 1 to make the next step more clear)
\[\htmlId{tooltip-integral}{\int} 1 \cdot \htmlId{tooltip-diff}{\:d}\htmlId{tooltip-funV}{v} = \htmlId{tooltip-integral}{\int} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x}\]
We can now use the power rule to simplify the left hand side. The power rule is:
\[\htmlId{tooltip-integral}{\int} (\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}^{\htmlId{tooltip-integer}{k}}) \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x} = \frac{\htmlId{tooltip-const}{a}}{\htmlId{tooltip-integer}{k} + 1}\htmlId{tooltip-var}{x}^ {\htmlId{tooltip-integer}{k} + 1} + \htmlId{tooltip-integrationConstant}{C}\]
This makes the left hand side just \( \htmlId{tooltip-funV}{v} \)
We also know the structure of the right hand side:
\[\htmlId{tooltip-integral}{\int} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x} = \frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}} + \htmlId{tooltip-integrationConstant}{C}, \htmlId{tooltip-const}{a} \neq 0\]
This simplifies that whole equation to:
\[\htmlId{tooltip-funV}{v} = \frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}}\]
We can now apply integration by parts: The equation becomes:
\[\htmlId{tooltip-integral}{\int} \htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x} = (\htmlId{tooltip-var}{x} \cdot \frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}}) - \htmlId{tooltip-integral}{\int} (\frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x})\]
Our right hand side now:
\[= \frac{\htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}} - \frac{1}{\htmlId{tooltip-const}{a}} \htmlId{tooltip-integral}{\int} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-time}{t}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-time}{t}\]
Again, we know the value of the integral, yielding:
\[= \frac{\htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}} - \frac{1}{\htmlId{tooltip-const}{a}} (\frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}})\]
From here it follows that the right hand side:
\[= \frac{\htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}} - \frac{\htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}}}{\htmlId{tooltip-const}{a}^{2}} + \htmlId{tooltip-integrationConstant}{C}\]
Finally, we can simplify the fraction, to get our final result of:
\[\htmlId{tooltip-integral}{\int} \htmlId{tooltip-var}{x} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} \htmlId{tooltip-diff}{\:d} \htmlId{tooltip-var}{x} = \frac{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x} - 1}{\htmlId{tooltip-const}{a}^{2}} \htmlId{tooltip-euler}{e}^{\htmlId{tooltip-const}{a} \htmlId{tooltip-var}{x}} + \htmlId{tooltip-integrationConstant}{C}\]
as required.
Coming soon...
Was this page helpful?