There are no prerequisites for this page
The trigonometric identity that describes the periodicity of the cosine function is \(\htmlId{tooltip-cosine}{\cos}(\htmlId{tooltip-angle}{\theta}) = \htmlId{tooltip-cosine}{\cos}(\htmlId{tooltip-angle}{\theta} + 2\htmlId{tooltip-pi}{\pi} \htmlId{tooltip-integer}{k}), \htmlId{tooltip-integer}{k} \in \mathbb{Z}\) , where \( \htmlId{tooltip-angle}{\theta} \) is the angle in radians and \( \htmlId{tooltip-integer}{k} \) is any integer. This identity signifies that the cosine function is periodic with a period of \(2\htmlId{tooltip-pi}{\pi}\), meaning that the function repeats its values every \(2\htmlId{tooltip-pi}{\pi}\) radians. It reflects the fundamental characteristic of the cosine function, which is its cyclical nature as it oscillates between \(−1\) and \(1\). The identity is crucial for solving trigonometric equations and understanding the behavior of waves and oscillations in various fields such as physics, engineering, and mathematics. It also underpins the analysis of harmonic motion and the study of wave functions in quantum mechanics, showcasing the widespread applicability of trigonometric periodicity.
\(k\) | This symbol represents any given integer, \( k \in \htmlId{tooltip-setOfIntegers}{\mathbb{Z}}\). |
\(\theta\) | This is a commonly used symbol to represent an angle in mathematics and physics. |
\(\cos\) | This is the symbol for cosine, a trigonometric function that calculates the ratio of the adjacent side to the hypotenuse of a right-angled triangle. |
\(\pi\) | This is the symbol for pi, mathematical constant representing the ratio of a circle's circumference(\( \htmlId{tooltip-circumference}{c} \)) to its diameter(\( \htmlId{tooltip-diameter}{d} \)). |
Suppose we choose \(\htmlId{tooltip-angle}{\theta} = \frac{\htmlId{tooltip-pi}{\pi}}{4}\) radians and \(\htmlId{tooltip-integer}{k}=1\). This choice of \( \htmlId{tooltip-integer}{k} \) indicates that we are looking one full cycle ahead from our initial angle. According to the identity, the cosine of this angle plus \(2\htmlId{tooltip-pi}{\pi}\) times \( \htmlId{tooltip-integer}{k} \) should be equal to the cosine of the initial angle.
Therefore, we have:
\[\htmlId{tooltip-cosine}{\cos}(\frac{\htmlId{tooltip-pi}{\pi}}{4}) = 2\htmlId{tooltip-pi}{\pi} \cdot 1 = \htmlId{tooltip-cosine}{\cos}(\frac{\htmlId{tooltip-pi}{\pi}}{4})\]
The cosine of \(\frac{\htmlId{tooltip-pi}{\pi}}{4}\) is \(\frac{\sqrt(2)}{2}\). Let's verify that \(\htmlId{tooltip-cosine}{\cos}(\frac{\htmlId{tooltip-pi}{\pi}}{4} = 2\htmlId{tooltip-pi}{\pi}\) yields the same result. Since adding \(2\htmlId{tooltip-pi}{\pi}\) to an angle results in a full circle rotation, the angle effectively remains the same in terms of its position on the unit circle, thus preserving the cosine value. Let's calculate it to confirm.
The calculation confirms that \(\htmlId{tooltip-cosine}{\cos}(\frac{\htmlId{tooltip-pi}{\pi}}{4}) = 0.7071067811865476\) and \(\htmlId{tooltip-cosine}{\cos}(\frac{\htmlId{tooltip-pi}{\pi}}{4} + 2\htmlId{tooltip-pi}{\pi}) = 0.7071067811865477)\). The slight difference in the last decimal place is due to rounding errors in the computation, but essentially, both values are equal to \(\frac{\sqrt(2)}{2}\), as expected. This numerical example illustrates the periodicity of the cosine function, demonstrating that adding \(2\htmlId{tooltip-pi}{\pi}\) (a full circle rotation) to the angle does not change the value of the cosine function, consistent with the identity \( \htmlId{tooltip-cosine}{\cos} \)(\( \htmlId{tooltip-angle}{\theta} \)) = \( \htmlId{tooltip-cosine}{\cos} \)(\( \htmlId{tooltip-angle}{\theta} \) + 2\( \htmlId{tooltip-pi}{\pi} \) \( \htmlId{tooltip-integer}{k} \)).
Was this page helpful?