Other Pages
Home
Equations
Symbols
Units
Topics
Equations
Symbols
Signals and Systems
Use this to prepare for the Signals and Systems resit...
Equations List
Sine-Cosine equivalence | \(\cos(\theta) = \sin(\theta + \pi/2)\)
Cosine Periodicity | \(\cos(\theta) = \cos(\theta + 2\pi k), k \in \mathbb{Z}\)
Cosine is an even function | \(\cos(\theta) = \cos(-\theta)\)
Sine is an odd function | \(\sin(-\theta) = -\sin(\theta)\)
Full cycle cosine idenity | \(\cos(2 \pi k) = 1, k \in \mathbb{Z}\)
Cosine quarter cycle zeros identity | \(\cos(\pi k + \frac{\pi}{2}) = 0, k \in \mathbb{Z}\)
Pythagorean identity | \(\cos^{2}(\theta) + \sin^{2}(\theta) = 1\)
Product to sum sine cosine | \(\sin(\theta) \cdot \cos(\phi) = \frac{1}{2}(\sin(\theta - \phi) + \sin(\theta + \phi))\)
Product to sum sine sine | \(\sin(\theta) \cdot \sin(\phi) = \frac{1}{2}(\cos(\theta - \phi) - \cos(\theta + \phi))\)
Product to sum cosine cosine | \(\cos(\theta) \cdot \cos(\phi) = \frac{1}{2}(\cos(\theta + \phi) + \cos(\theta - \phi))\)
Imaginary Number Relation to Real Numbers | \(j = \sqrt{-1}\)
Complex Conjugate Definition | \((a + bj)^{*} = a - bj\)
Eulers Formula | \(e^{j \cdot \theta} = \cos(\theta) + j \sin(\theta)\)
Euler Definition of Sine | \(\sin(\theta) = \frac{e^{j \cdot \theta} - e^{-j \cdot \theta}}{2 \cdot j}\)
Euler Definition of Cosine | \(\cos(\theta) = \frac{e^{j \cdot \theta} + e^{-j \cdot \theta}}{2}\)
Integral of exp(ax) wrt x | \(\int e^{a x} \:d x = \frac{e^{a x}}{a} + C, a \neq 0\)
Definition of Product Symbol | \(\prod_{a = i}^{b} x_{i} = a_{i} a_{i + 1} ... a_{b}, a < b\)
Integral of (a exp(ax)) wrt x | \(\int x e^{a x} \:d x = \frac{a x - 1}{a^{2}} e^{a x} + C\)
Quadratic Formula | \(x_{1, 2} = \frac{-b \pm \sqrt{b^{2} - 4 a c}}{2 a}\)
Definition of Sampling Frequency | \(f_{s} = \frac{1}{T_{s}}\)
Normalized Radian Frequency | \(\hat \omega = \omega T_{s}\)
Discrete signal | \(x[n] = x(nT_{s}) = a \cos(\omega n T_{s} + \phi) = a \cos(\hat \omega n + \phi)\)
Definition of a Finite Impulse Response | \(h[n] = \sum_{k = 0}^{M} b_{k} \delta[n - k]\)
General form of a Finite Impulse Response Filter | \(h[n] = \sum_{k = 0}^{M} b_{k} x[n - k]\)
Convolution of a Signal and a Filter | \(h[n] \ast x[n]= \sum_{k = 0}^{M} h[k] x[n - k]\)
Sinusoidal Response of Finite Impulse Response Filter | \(H(e^{j \hat \omega}) = \sum_{k = 0}^{M} b_{k} e^{-j \hat \omega k} = \sum_{k = 0}^{M} = h[n] e^{je \hat \omega}\)
Fourier Series (Exponential Form) | \(x(t) = \sum_{k = -\infty}^{\infty} a_{k} e^{j(2 \pi / T_{0} ) k t}\)
Symbols List
Angle | \(\theta\)
Sine | \(\sin\)
Cosine | \(\cos\)
Imaginary Number | \(j\)
Pi | \(\pi\)
Eulers Constant | \(e\)
Frequency | \(f\)
Period | \(T\)
Fundamental Period | \(T_{0}\)
Real Part | \(\Re\)
Imaginary Part | \(\Im\)
Complex Conjugate | \(^{*}\)
Signal Function | \(x\)
Impulse Response | \(h\)
Finite Impulse Response | \(h\)
Response of Filter | \(y\)
Radian Frequency | \(\omega\)
Sinusoidal Response of a Finite Impulse Response Filter | \(H\)
Convolution | \(\ast\)
Was this page helpful?
This page was helpful.
This page was not helpful.